Foundations of Programming Languages

Foundations: Memory

Prof. Dr. Christoph Reichenbach

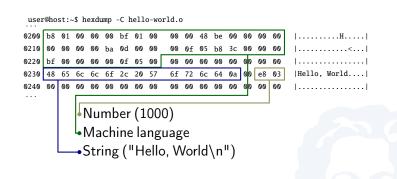
Fachbereich 12 / Institut für Informatik

17. Oktober 2014

```
user@host:~$ hexdump -C hello-world.o \cdots
```

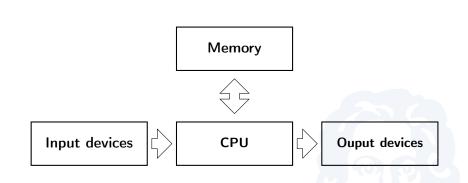
. . .

Number (1000)

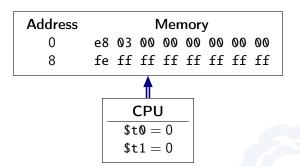


Memory can contain all sorts of data, often freely mixed

The Computer

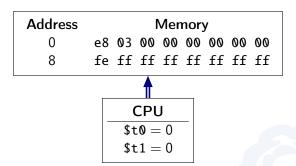


CPU + RAM Interaction



► RAM behaves like array: maps *addresses* to bytes

CPU + RAM Interaction



- ► RAM behaves like array: maps *addresses* to bytes
- ▶ To operate on memory:
 - ► CPU loads RAM contents into registers such as \$t0, \$t1
 - CPU operates on registers
 - CPU writes back registers into RAM

Representing Numbers

- Numbers can be represented in a variety of ways
- ► Here: 64-bit little-endian two's complement numbers

In-Memory Representation	Hexad	lecimal	Decimal
00 00 00 00 00 00 00 00		0x0	0
01 00 00 00 00 00 00 00		0x1	1
10 00 00 00 00 00 00 00		0x10	16
0a 00 00 00 00 00 00 00		0xa	10
0f 00 00 00 00 00 00 00		0xf	15
00 01 00 00 00 00 00 00		0x100	256
ff ff ff ff ff ff ff	0xffffffffffffffff		-1
fe ff ff ff ff ff ff	0xfffffffffffffe		-2

- ▶ $\operatorname{num}_{s}^{k}(a)$ for interpreting signed k-bit strings: $\operatorname{num}_{s}^{4}(1111) = -1$
- ▶ $\operatorname{num}_{u}^{k}(a)$ for interpreting unsigned k-bit strings: $\operatorname{num}_{u}^{4}(1111) = 15$

Notation for common bit-string activities

- ▶ $\operatorname{num}_{s}^{k}(a)$ for interpreting signed k-bit strings: $\operatorname{num}_{s}^{k}(1111) = -1$
- ▶ $\operatorname{num}_{u}^{k}(a)$ for interpreting unsigned k-bit strings: $\operatorname{num}_{u}^{4}(1111) = 15$
- repr^k(n) for two's complement representation: repr⁸(7) = 00000111, repr²(15) = 11 (Cuts off excess bits)

- ▶ $\operatorname{num}_{s}^{k}(a)$ for interpreting signed k-bit strings: $\operatorname{num}_{s}^{4}(1111) = -1$
- ▶ $\operatorname{num}_{u}^{k}(a)$ for interpreting unsigned k-bit strings: $\operatorname{num}_{u}^{4}(1111) = 15$
- repr^k(n) for two's complement representation: repr⁸(7) = 00000111, repr²(15) = 11 (Cuts off excess bits)
- a:b for bit string concatenation: 01001:101 = 01001101

- ▶ $\operatorname{num}_{s}^{k}(a)$ for interpreting signed k-bit strings: $\operatorname{num}_{s}^{k}(1111) = -1$
- ▶ num_u^k(a) for interpreting unsigned k-bit strings: num_u⁴(1111) = 15
- repr^k(n) for two's complement representation: repr⁸(7) = 00000111, repr²(15) = 11 (Cuts off excess bits)
- a:b for bit string concatenation: 01001:101 = 01001101
- ▶ a[x : y] for bit string ranges: 0101101[4 : 1] = 0110

- ▶ $\operatorname{num}_{s}^{k}(a)$ for interpreting signed k-bit strings: $\operatorname{num}_{s}^{k}(1111) = -1$
- ▶ num_u^k(a) for interpreting unsigned k-bit strings: num_u⁴(1111) = 15
- repr^k(n) for two's complement representation: repr⁸(7) = 00000111, repr²(15) = 11 (Cuts off excess bits)
- a:b for bit string concatenation: 01001:101 = 01001101
- ► a[x : y] for bit string ranges: 0101101[4 : 1] = 0110

- ▶ $\operatorname{num}_{s}^{k}(a)$ for interpreting signed k-bit strings: $\operatorname{num}_{s}^{k}(1111) = -1$
- ▶ $\operatorname{num}_{u}^{k}(a)$ for interpreting unsigned k-bit strings: $\operatorname{num}_{u}^{4}(1111) = 15$
- repr^k(n) for two's complement representation: repr⁸(7) = 00000111, repr²(15) = 11 (Cuts off excess bits)
- a:b for bit string concatenation: 01001:101 = 01001101
- ► a[x : y] for bit string ranges: 0101101[4 : 1] = 0110
- a^n for repetition: $(01)^3 = 010101$

Summary

- All data is kept in RAM or in registers
 - RAM: lots of space, slow
 - ► Registers: very few, fast
- Code is data: CPU executes instructions from RAM
- Code can decide freely how to represent
 - Arrays
 - Data structures
 - Objects
 - Algebraic values

. . .

► Here, we work with 64-bit little-endian two's complement numbers